ФИЗИКО – ХИМИЧЕСКИЙ АНАЛИЗ КОСМЕТИЧЕСКИХ ГЛИН

Татьяна Вандич, Яна Крылова, Яна Момотюк, Диана Овсяникова, Ксения Панищева, Александра Репченко, Инна Семашко, Яна Симончик, Елизавета Фурс, Татьяна Яцушкевич Руководители – И.И. Воронина, Т.И. Сидоренко, Т.М. Супонева

Могилевский медицинский колледж

г. Могилев, Республика Беларусь

Глины образуются в результате выветривания магматических горных пород и относятся к алюмосиликатам. В их состав входят два основных минерала: каолинит $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$ (глина каолин) и монтмориллонит $MgO \cdot Al_2O_3 \cdot 3SiO_2 \cdot 1,5H_2O$ (глина бентонит). Каолиновая глина образуется в результате выветривания минералов силиката алюминия, таких как полевой шпат, бентонитовая глина образуется из вулканического пепла в присутствии воды. В глинах также могут присутствовать Fe_2O_3 , FeO, TiO_2 , CaO, MgO, K_2O , Na_2O , CO_2 , реже MnO, SO_3 , P_2O_5 .

В природе различают до 40 видов глины, а в зависимости от ее породы и способа образования она может быть окрашена в различные цвета и иметь самые разные оттенки. Чаще всего встречаются белая, желтая, голубая, зеленоватая, красная, темно-коричневая и серо-черная глина. Цвета глины определяются присутствием в ней самых разных солей. Например, голубая содержит соли кобальта и кадмия, черная – соли железа.

Белая глина насыщает кожу необходимыми микроэлементами, способствуя образованию естественного коллагена и эластина, очищает кожу от шлаков, токсинов и других загрязнений. Голубая глина восстанавливает структуру эпидермиса и стимулирует омолаживающие процессы в коже, разглаживает морщины, подтягивает овал лица. Черная глина обладает адсорбирующими свойствам, глубоко очищает кожу от загрязнений и токсинов, впитывает излишки жира, сужает поры, подсушивает и дезинфицирует.

В настоящее время растет интерес к лечению с помощью минералов. Поэтому было решено провести исследования целебных свойств различных косметических глин.

Анализ косметических глин проводился с учащимися Могилевского медицинского колледжа в рамках учебно-исследовательской работы. В качестве объектов исследования были выбраны следующие образцы глин:

- образец I: глина с природного источника «Голубая крыница», расположенного возле города Славгород Республики Беларусь. Глина придает голубой цвет источнику, вода из этого источника признана целебной.
- образец II: глина тибетская голубая с экстрактом можжевельника бренда «Артколор» Россия (монтмориллонит, Ag, Ca, K, Na, Fe, Mg, Zn, Cu, Mn).
- образец III: глина белая азиатская с листьями вальтерии бренда «Витэкс» Республики Беларусь (каолин, маннитол, SiO₂, K, Ca, Zn, Mg, Mn).
- образец IV: глина голубая байкальская с лепестками василька производства бренда «Витэкс» Республики Беларусь (бентонит, каолин, Са, Fe, Na, Mn, Zn, K, Mg, Cr, P, Mo, Cu).
- образец V: глина черная вулканическая с можжевельником производства бренда «Витэкс» Республики Беларусь (бентонит, Fe, C, Ca, K, Si, N, Zn, Mg).

Физический анализ - определение адсорбционной способности глины проводили при помощи 0,03% раствора перманганата калия (розовая окраска) и 0,05% водного раствора йода (светло-желтая окраска). Было установлено, что самой низкой адсорбцией обладает белая глина, голубая глин двух образцов обладает незначительной адсорбцией, высокая адсорбция у глины из природного источника, максимальной адсорбцией обладает черная глина – в составе содержится углерод.

Химический анализ глин проводился по следующей схеме: разложение навески глины массой 2 г 30% раствором азотной кислоты при нагревании на водяной бане \rightarrow отделение осадка фильтрованием, прокаливание до постоянной массы при $t=150^{\circ}$ C и определение w (SiO₂) \rightarrow определение в

фильтрате катионов при помощи качественного анализа [1, с. 148 - 151]. Результаты анализа представлены в ($maбл.\ 1\ u\ 2$).

Определение содержания w (SiO₂) в образцах глин. Таблица 1

№ образца	т (навески), г	m (сухого остатка), г	w (SiO ₂), %
I	2,000	1,350	67,5
II	2,000	1,870	93,5
III	2,000	1,975	98,8
IV	2,000	1,840	92,0
V	2,000	1,915	95,8

При растворении образца I в азотной кислоте наблюдалось бурное выделение пузырьков газа. При пропускании выделяющегося газа через раствор Ca(OH)₂ происходило помутнение раствора — выделялся углекислый газ. Значительная потеря массы также подтверждает наличие карбонатов в образце I. Потеря массы также наблюдается в образцах голубой глины II и IV. Самая незначительная потеря в образце белой глины III.

Качественный анализ катионов.

Таблица 2

Образец І		Образец II		Образец III		Образец IV		Образец V	
Заявлено	Определено	Заявлено	Определено	Заявлено	Определено	Заявлено	Определено	Заявлено	Определено
	Al ³⁺	-	Al ³⁺	-	Al ³⁺		Al ³⁺		Al ³⁺
	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺	Fe ³⁺
	Ca ²⁺	Ca ²⁺	-	Ca ²⁺	Ca ²⁺	Ca ²⁺	-	Ca ²⁺	-
	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}	Mg^{2+}
		Na ⁺	Na ⁺	Na ⁺	-	Na ⁺	Na ⁺	Na ⁺	Na ⁺
	K ⁺	K ⁺	K ⁺	K ⁺	K ⁺	K ⁺	K ⁺	K ⁺	K ⁺
		Ag^+	-			Cr ³⁺	-	Zn ²⁺	-
		Zn^{2+}	-			Zn^{2+}	-		
		Cu ²⁺	-			Cu ²⁺	-		
		Mn ²⁺	-			Mn ²⁺	-		

Анализ фильтрата проводили по стандартной схеме для качественного определения катионов. На катионы Fe^{3+} проба проводилась с $K_4[Fe(CN)_6]$. Проба с HCl на катионы 2 группы Ag^+ и Pb^{2+} была отрицательной. Проба с H_2SO_4 на катионы 3 группы Ba^{2+} и Ca^{2+} была положительна только на кальций. Проба на катионы 4, 5 и 6 групп с NaOH давала образование желтокоричневого осадка $Fe(OH)_3$, после фильтрование которого в фильтрате обнаруживался катион 4 группы Al^{3+} , а Zn^{2+} обнаружен не был. После промывания осадка концентрированным раствором NH_4Cl в фильтрате определялся Mg^{2+} при помощи Na_2HPO_4 . После осаждения катионов 2-6 групп избытком Na_2CO_3 и отделении осадка, в фильтрате определяли Na^+ с помощью $K[Sb(OH)_6]$ и K^+ с помощью двух реактивов $Na_3[Co(NO_3)_6]$ и $H_2C_4H_4O_6$.

На основании результатов анализа можно сделать следующие выводы. Глина I из природного источника содержит в своем составе основные компоненты глины – алюминий, железо, кальций и магний, а также много карбонатов. Элементов, оказывающих целебное действие на организм, не глине II обнаружено. В производителем заявлено достаточно МНОГО микроэлементов. Нами обнаружены только основные элементы, которые входят в состав глин. В глине III заявлено немного микроэлементов. Почти все элементы в ней содержатся. В глине IV заявлено больше всего микроэлементов, основная часть которых нами не была обнаружена. Возможно, они содержаться в микроколичествах, определить которые не позволяет качественный анализ. Глина V содержит в своём составе углерод, что способствует увеличению её адсорбционной способности. В дальнейших исследованиях планируется провести количественное определение микроэлементов, заявленных в голубых глинах, чтобы сделать выводы о максимальной пользе этих глин.

ПЕРЕЧЕНЬ ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Барковский Е.В. Аналитическая химия: учеб. пособие / Е.В. Барковский, С.В.Ткачев. – мн.: высш. шк., 2004. – 351 с.